Abstract

Through the analysis of scales on the drift–diffusion device model of a planar-structured perovskite solar cell, we have obtained accurate-analytical expressions that capture the recombination losses within the cell. The recombination losses are resolved into the radiative and Shockley–Read–Hall mechanisms, as well as interfacial recombination between the perovskite and electron/hole-transporting layers. After parameter calibration with the state of the art planar perovskite solar cell of 23.5% efficiency, the percentage contribution of various recombination loss channels within a planar-structured perovskite solar cell is analytically determined through derived scales and numerically verified at the condition of an open-circuit voltage and a short-circuit current, as well as gives a good prediction of a dominant recombination mechanism within the cell. On this basis, a comparison of loss analysis between the estimated scales and numeric results is carried out at the condition of an open-circuit voltage when a wide range of parameters influencing the recombination current is deviated simultaneously, and a good agreement is obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.