Abstract

Photolysis of nitrous acid (HONO) is one of the major sources for atmospheric hydroxyl radicals (OH), playing significant role in initiating tropospheric photochemical reactions for ozone (O3) production. However, scarce field investigations were conducted to elucidate this effect. In this study, a field campaign was conducted at a suburban site in southwest China. The whole observation was classified into three periods based on O3 levels and data coverage: the serious O3 pollution period (Aug 13–18 as P1), the O3 pollution period (Aug 22–28 as P2) and the clean period (Sep 3–12 as P3), with average O3 peak values of 96 ppb, 82 ppb and 44 ppb, respectively. There was no significant difference of the levels of O3 precursors (VOCs and NOx) between P1 and P2, and thus the evident elevation of OH peak values in P1 was suspected to be the most possible explanation for the higher O3 peak values. Considering the larger contribution of HONO photolysis to HOX primary production than photolysis of HCHO, O3 and ozonolysis of Alkenes, sensitivity tests of HONO reduction on O3 production rate in P1 are conducted by a 0-dimension model. Reduced HONO concentration effectively slows the O3 production in the morning, and such effect correlates with the calculated production rate of OH radicals from HONO photolysis. Higher HONO level supplying for OH radical initiation in the early morning might be the main reason for the higher O3 peak values in P1, which explained the correlation (R2 = 0.51) between average O3 value during daytime (10:00–19:00 LT) and average HONO value during early morning (00:00–05:00 LT). For nighttime accumulation, a suitable range of relative humidity that favored NO2 conversion within P1 was assumed to be the reason for the higher HONO concentration in the following early morning which promoted O3 peak values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.