Abstract

Nucleotide variation in a portion of the mitochondrial cytochrome c oxidase subunit1 ( cox1) gene from asexual stages of bucephalids of southern Australian scallops ( Chlamys asperrima, Chlamys bifrons and Pecten fumatus) was investigated using a mutation scanning–sequencing approach. Single-strand conformation polymorphism (SSCP) analysis revealed three main profile types (A, B and C) for parasites isolated from scallops. Sequence analysis revealed that samples represented by profiles B and C had a high degree (97.3%) of sequence similarity, whereas they were ∼21% different in sequence from those represented by profile A. These findings suggested that at least two types or species (represented by profile A, or profile B or C) of bucephalid infect scallops, of which both were detected in South Australia, while only one was found in Victoria. The prevalence of bucephalids (and their SSCP haplotypes) appeared to differ among the three species of scallop in South Australia as well as between the two scallop species in Victoria, indicating a degree of host specificity. Adult bucephalids were collected from Eastern Australian Salmon ( Arripis trutta), in an attempt to match them with the asexual stages from the scallop hosts. Neither of the two taxa of adult bucephalid ( Telorhynchus arripidis and an un-named Telorhynchus species) shared SSCP profiles with the bucephalids from scallops, but were genetically similar, suggesting that the asexual stages from scallops may represent the genus Telorhynchus. This study, which assessed nucleotide sequence variation in a portion of the mitochondrial cox1 gene for bucephalids found in scallops and arripid fish, illustrates the usefulness of the mutation scanning approach to elucidate complex life-cycles of marine parasites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.