Abstract

There is an urgent need to identify and understand the ecosystem services of pollination and seed dispersal provided by threatened mammals such as flying foxes. The first step towards this is to obtain comprehensive data on their diet. However, the volant and nocturnal nature of bats presents a particularly challenging situation, and conventional microhistological approaches to studying their diet can be laborious and time-consuming, and provide incomplete information. We used Illumina Next-Generation Sequencing (NGS) as a novel, non-invasive method for analysing the diet of the island flying fox (Pteropus hypomelanus) on Tioman Island, Peninsular Malaysia. Through DNA metabarcoding of plants in flying fox droppings, using primers targeting the rbcL gene, we identified at least 29 Operationally Taxonomic Units (OTUs) comprising the diet of this giant pteropodid. OTU sequences matched at least four genera and 14 plant families from online reference databases based on a conservative Least Common Ancestor approach, and eight species from our site-specific plant reference collection. NGS was just as successful as conventional microhistological analysis in detecting plant taxa from droppings, but also uncovered six additional plant taxa. The island flying fox’s diet appeared to be dominated by figs (Ficus sp.), which was the most abundant plant taxon detected in the droppings every single month. Our study has shown that NGS can add value to the conventional microhistological approach in identifying food plant species from flying fox droppings. At this point in time, more accurate genus- and species-level identification of OTUs not only requires support from databases with more representative sequences of relevant plant DNA, but probably necessitates in situ collection of plant specimens to create a reference collection. Although this method cannot be used to quantify true abundance or proportion of plant species, nor plant parts consumed, it ultimately provides a very important first step towards identifying plant taxa and spatio-temporal patterns in flying fox diets.

Highlights

  • Understanding the contribution of animals to the functioning of rainforests has become an important issue in conservation biology

  • We evaluated the utility of Illumina Generation Sequencing (NGS) to identify plant species present in the droppings of the island flying fox (Pteropus hypomelanus) from Tioman Island in Peninsular Malaysia

  • Sample PTMN02 was an interesting exception as it formed a sister group with the Ficus clade (SH-like local support = 0.938), but not with other congeners. rbcL sequences representing the plant species collected on Tioman were scarce in the BOLD/NCBI databases, suggesting these databases have insufficient sequence representation that can affect taxonomic assignment of plant DNA in the droppings

Read more

Summary

Introduction

Understanding the contribution of animals to the functioning of rainforests has become an important issue in conservation biology. In the Old World, fruit bats such as flying foxes (Pteropodidae: Pteropus spp., Acerodon spp.; Kingston, 2010) have become increasingly threatened by hunting for bushmeat and medicine (Mildenstein, Tanshi & Racey, 2016) Identifying their diet and roles as ecosystem service providers can help strengthen arguments for their protection. Flying foxes are likely to be important players in island ecosystems where they often serve as keystone pollinators and seed dispersers both within and between islands (Cox et al, 1991; Banack, 1998; McConkey & Drake, 2007; McConkey & Drake, 2015), and where maintaining their numbers at high densities is necessary for the survival of plant communities (McConkey & Drake, 2006) Such data are important to understand the drivers and potential mitigation strategies for conflicts between fruit bats and humans (Aziz et al, 2016; Aziz et al, in press)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call