Abstract
Copper oxide nanoparticles (CuO-NPs) have been suggested as effective catalysts to degrade many persistent organic contaminants. In parallel, CuO-NPs are considered toxic to soil microorganisms, plants and human cells, possibly because they induce oxidative stress and generation of reactive oxygen species (ROS). However, the mechanism of the catalytic process and the generated ROS are poorly understood. Here we discuss the reaction mechanism of CuO-NPs during the catalytic degradation of enrofloxacin – an antibiotic pharmaceutical used in this study as a representative persistent organic compound. The degradation of an aqueous solution of the enrofloxacin exposed to CuO-NPs and hydrogen peroxide was studied showing fast removal of the enrofloxacin at ambient conditionsns. ROS production was identified by electron spin resonance and a spin trapping technique. The distribution of the free radical species indicated production of a high percentage of superoxide (O2−.) radicals as well as hydroxyl radicals; this production is similar to the “radical production” activity of the superoxide dismutase (SOD) enzyme in the presence of hydrogen peroxide. This activity was also tested in the opposite direction, to examine if CuO-NPs show reactivity that potentially mimics the classical SOD enzymatic activity. The CuO-NPs were found to catalyze the dismutation of superoxide to hydrogen peroxide and oxygen in a set of laboratory experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.