Abstract
This study showcased the antibiotic degradation abilities of laccase and catalase-peroxidase from Bacillus ligniniphilus L1, an extremophile, against 18 common antibiotics using computationally guided approach. Molecular docking and simulation identified six enzyme-antibiotic complexes for laccase and four for catalase-peroxidase, demonstrating significant binding affinity and stability. Enzyme activity assays corroborated computational results, indicating both enzymes could degrade all tested antibiotics with varying efficiencies. L1 laccase outperformed commercial laccase against five antibiotics, notably vancomycin, levofloxacin, tobramycin, linezolid, and rifamycin, with enhanced degradation potential upon ABTS addition. Catalase-peroxidase from L1 exhibited superior degradation efficiency over commercial peroxidase against vancomycin, linezolid, tobramycin, and clindamycin. Overall, this study underscores the computational approach’s utility in understanding enzyme-mediated antibiotic degradation, offering insights into environmental contaminant remediation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.