Abstract

The exoskeletons of insects are covered by complex mixtures of cuticular hydrocarbons (CHCs) which are involved in social and sexual communication. However, little is known about the relationship between the structures of CHCs and their behavioral activity. The key component of the contact sex pheromone of the parasitoid Lariophagus distinguendus is 3-methylheptacosane (3-MeC27), which is present in CHC profiles of both females and newly emerged males. The CHCs of females and young males elicit wing-fanning behavior in older males. However, as young males age, 3-MeC27 disappears from their CHC profiles and they no longer elicit wing-fanning responses from other males. We applied enantiopure 3-MeC27 and structurally related CHCs (with respect to chain length or methyl-branch position) to the cuticle of aged male dummies and recorded the wing-fanning behavior of responding males. Only the two enantiomers of 3-MeC27 restored the dummies’ attractiveness. The addition of structurally related CHCs or various n-alkanes to bioactive dummies of young males and females significantly decreased wing-fanning by test males. Hence, L. distinguendus males respond specifically but not enantioselectively to 3-MeC27, and perceive the CHC profiles as a whole. Both removal (as is the case with 3-MeC27 in aging males) and addition of individual compounds may disrupt the behavioral response.

Highlights

  • Insects utilize chemical signals and cues in all aspects of their life histories and ecologies, and possess an innate ability to detect and discriminate different chemicals and associate them with the correct biological context

  • The addition of either (R)- or (S)-3-MeC27 to unattractive 4-d-old male dummies restored the wing-fanning behavioral responses elicited from test males, with responding males wing-fanning for significantly longer periods in the presence of pheromone-treated dummies than in the presence of solvent-treated controls (Figure 3)

  • L. distinguendus males respond very to 3-MeC27 and can discriminate variations in chain length of two carbons, and variations in methyl branch position of two or more positions. These results suggest that a missing key component in the cuticular hydrocarbons (CHCs) profile cannot be replaced by a structurally related analogue, and emphasizes the critical role of 3-MeC27 in the L. distinguendus contact sex pheromone

Read more

Summary

Introduction

Insects utilize chemical signals and cues in all aspects of their life histories and ecologies, and possess an innate ability to detect and discriminate different chemicals and associate them with the correct biological context. It has been well established that insects employ volatile substances for long-range communication, and more recently it has become clear that many insects utilize non-volatile compounds as short-range or contact pheromones [1]. These compounds are components of the protective layer of cuticular lipids covering the insect exoskeleton. This lipid layer consists primarily of a complex blend of n-alkanes, methyl-branched alkanes, and alkenes, typically with chain lengths of about 21±37 carbons (referred to as cuticular hydrocarbons, CHCs), as well as more polar compounds such as long-chain fatty acids, alcohols, aldehydes, wax esters, and triacylglycerides [2±5]. CHCs are directly involved in nestmate recognition, formation and maintenance of social castes, and determination of the health and fecundity of the reproductive caste [1]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.