Abstract

Risperidone is useful for the treatment of schizophrenia symptoms; however, it also has side effects, and an overdose can be harmful. The metabolic effects of risperidone at high therapeutic doses and its metabolites have not been elucidated. Endogenous cellular metabolites may be comprehensively analyzed using untargeted metabolomics-based liquid chromatography-mass spectrometry (LC-MS), which can reveal changes in cell regulation and metabolic pathways. By identifying the metabolites and pathway changes using a nontargeted metabolomics-based LC-MS approach, we aimed to shed light on the potential toxicological effects of high-dose risperidone on brain microvascular endothelial cells (MVECs) associated with the human blood brain barrier. A total of 42 metabolites were selected as significant putative metabolites of the toxicological response of high-dose risperidone in MVECs. Six highly correlated pathways were identified, including those involving diacylglycerol, fatty acid, ceramide, glycerophospholipid, amino acid, and tricarboxylic acid metabolism. We demonstrated that methods focused on metabolomics are useful for identifying metabolites that may be used to clarify the mechanism of drug-induced toxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.