Abstract

While microbial reduction has gained widespread recognition for efficiently remediating environments polluted by toxic metavanadate [V(V)], the pool of identified V(V)-reducing strains remains rather limited, with the vast majority belonging to bacteria and fungi. This study is among the first to confirm the V(V) reduction capability of Streptomyces microflavus, a representative member of ubiquitous actinomycetes in environment. A V(V) removal efficiency of 91.0 ± 4.35% was achieved during 12 days of operation, with a maximum specific growth rate of 0.073 d-1. V(V) was bioreduced to insoluble V(IV) precipitates. V(V) reduction took place both intracellularly and extracellularly. Electron transfer was enhanced during V(V) bioreduction with increased electron transporters. The electron-transfer pathways were revealed through transcriptomic, proteomic, and metabolomic analyses. Electrons might flow either through the respiratory chain to reduce intracellular V(V) or to cytochrome c on the outer membrane for extracellular V(V) reduction. Soluble riboflavin and quinone also possibly mediated extracellular V(V) reduction. Glutathione might deliver electrons for intracellular V(V) reduction. Bioaugmentation of the aquifer sediment with S. microflavus accelerated V(V) reduction. The strain could successfully colonize the sediment and foster positive correlations with indigenous microorganisms. This study offers new microbial resources for V(V) bioremediation and improve the understanding of the involved molecular mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.