Abstract
Sulfadiazine (SDZ) as a typical sulfonamide antibiotic is commonly detected in wastewater, and its removal mechanism and transformation pathways in microalgae-mediated system remain unclear. In this study, the SDZ removal through hydrolysis, photodegradation, and biodegradation by Chlorella pyrenoidosa was investigated. Higher superoxide dismutase activity and biochemical components accumulation were obtained under SDZ stress. The SDZ removal efficiencies at different initial concentrations were 65.9–67.6%, and the removal rate followed pseudo first-order kinetic model. Batch tests and HPLC-MS/MS analyses suggested that biodegradation and photodegradation through the reactions of amine group oxidation, ring opening, hydroxylation, and the cleavage of S–N, C–N, C–S bond were dominant removal mechanisms and pathways. Characteristics of transformation products were evaluated to analyze their environmental impacts. High-value products of lipid, carbohydrate, and protein in microalgae biomass presented economic potential of microalgae-mediated metabolism for SDZ removal. The findings of this study broadened the knowledge for the microalgae self-protection from SDZ stress and provided a deep insight into SDZ removal mechanism and transformation pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.