Abstract

We demonstrate an effective method for calculating bound-to-continuum cross-sections by examining transitions to bound states above the ionization energy that result from placing the system of interest within an infinite spherical well. Using photoionization of the hydrogen atom as an example, we demonstrate convergence between this approach for a large volume of confinement and an exact analytical alternate approach that uses energy-normalized continuum wavefunctions, which helps to elucidate the implementation of Fermi's golden rule. As the radius of confinement varies, the resulting changes in physical behavior of the system are presented and discussed. The photoionization cross-sections from a variety of atomic states with principal quantum number n are seen to obey particular scaling laws.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.