Abstract

Embryonic diapause is an enigmatic phenomenon that appears in diverse species. Although regulatory mechanisms have been established, there is much to be discovered. Herein, we have made the first comprehensive attempt to elucidate diapause regulatory mechanisms using a computational approach. We found transcription factors unique to promoters of genes in diapause species. From pathway analysis and STRING PPI networks, the signaling pathways regulated by these unique transcription factors were identified. The pathways were then consolidated into a model to combine various known mechanisms of diapause regulation. This work also highlighted certain transcription factors that may act as 'master transcription factors' to regulate the phenomenon. Promoter analysis further suggested evidence for independent evolution for some of regulatory elements involved in diapause.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.