Abstract
Incorporation of solvent additive in bulk heterojunction layer has been effective method for the optimization of film morphology and crystallinity, enabling high efficiency organic solar cells under standard 1 SUN illumination. However, the effects of the additives in low-intensity indoor light environment have not been investigated much so far. In this study, a new donor polymer (PBz-ET) having an efficient spectral matching with LED was synthesized and employed. Moreover, we elucidate the different roles of additives for organic solar cell operations depending on 1 SUN and low-intensity LED illuminations. Through systemic characterizations on morphology, crystallinity, and electrical properties, we found that the additive boosting nanoscale phase separation is compatible for the organic solar cells working in 1 SUN illumination while the additive being capable of increasing crystallinity is more adaptable to those used for indoor light environment. The results in this study suggest a rational selection rule of additives for designing organic solar cells in different light environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.