Abstract

In2 O3 has emerged as a promising catalyst for CO2 activation, but a fundamental understanding of its mode of operation in CO2 hydrogenation is still missing, as the application of operando vibrational spectroscopy is challenging due to absorption effects. In this mechanistic study, we systematically address the redox processes related to the reverse water-gas shift reaction (rWGSR) over In2 O3 nanoparticles, both at the surface and in the bulk. Based on temperature-dependent operando UV/Vis spectra and a novel operando impedance approach for thermal powder catalysts, we propose oxidation by CO2 as the rate-determining step for the rWGSR. The results are consistent with redox processes, whereby hydrogen-containing surface species are shown to exhibit a promoting effect. Our findings demonstrate that oxygen/hydrogen dynamics, in addition to surface processes, are important for the activity, which is expected to be of relevance not only for In2 O3 but also for other reducible oxide catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.