Abstract

Suicide is a major public health concern. Although there have been several studies of suicidal behavior that focused on the roles of psychosocial and sociocultural factors, these factors are of too little predictive value to be clinically useful. Therefore, research on the biological perspective of suicide has gained a stronghold and appears to provide a promising approach to identify biological risk factors associated with suicidal behavior. Recent studies demonstrate that an alteration in synaptic and structural plasticity is key to affective illnesses and suicide. Signal transduction molecules play an important role in such plastic events. Protein kinase A (PKA) is a crucial enzyme in the adenylyl cyclase signal transduction pathway and is involved in regulating gene transcription, cell survival, and plasticity. In this review, we critically and comprehensively discuss the role of PKA in suicidal behavior. Because stress is an important component of suicide, we also discuss whether stress affects PKA and how this may be associated with suicidal behavior. In addition, we also discuss the functional significance of the findings regarding PKA by describing the role of important PKA substrates (i.e., Rap1, cyclic adenosine monophosphate response element binding protein, and target gene brain-derived neurotrophic factor). These studies suggest the interesting possibility that PKA and related signaling molecules may serve as important neurobiological factors in suicide and may be relevant in target-specific therapeutic interventions for these disorders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call