Abstract

AbstractThe electrochemical performance of all‐solid‐state lithium batteries (ASSLBs) can be significantly improved by addressing the challenges posed by space charge layer (SCL) effect, which plays a crucial role in determining Li+ ions transport kinetic at cathodic interface. Therefore, it is critical to realize the in situ inspection and visualization of SCL behaviors for solving sluggish Li+ ions transport issues, despite remaining grant challenges. Therewith, the well‐defined model of LiNbO3‐coated NCM (NCM@LNO) cathode is constructed and assembled for the representative Li6PS5Cl‐based ASSLBs, which not only ensures excellent cathodic compatibility, but also preferably enables the better monitoring of Li+ ions transport kinetics. Combining ex situ analysis with DFT calculation, the formation and evolution mechanism of SCL are comprehensively understood, and the relationship between well‐controlled SCL configuration and Li+ electrochemical behavior has been also further illustrated and established through the operando Raman spectroscopy. On these grounds, the preferred NCM@LNO cathodes acquire the enhanced discharge capacity of 90.6% (144.8 mAh g−1) after 100 cycles and it can still deliver the exceptional capacity of 136.2 mAh g−1 after 800 cycles in ASSLBs. Hence, the research will pave up a new perspective for fundamental scientific insight of the SCL and reasonable tailoring of cathodic interface for high‐efficiency ASSLBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call