Abstract

Simulations at multiple levels were performed to investigate the aqueous adsorption of phthalate esters (PAEs) on carbon nanoparticles and to find the competitive effect of a low molecular weight natural organic acid (benzoic acid) on the adsorption process. Six PAEs of varying alkyl side chain lengths and three carbon‐based nanomaterials including a single‐walled carbon nanotube (SWNT), double‐walled carbon nanotube (DWNT), and graphene (G) were studied. Results showed that the adsorption energies calculated using density functional theory increase with increasing length of the PAE alkyl chain. G exhibits higher adsorption capacity for the PAEs than SWNT and DWNT. The absolute adsorption energies of these systems also display a positive linear correlation with the hydrophobicity of the PAE molecules. Molecular dynamics simulations indicate that the presence of neutral/anionic benzoic acid in water alleviates the PAE adsorption. Furthermore, anionic benzoic acid exerts more impact on the PAE adsorption than the neutral form.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call