Abstract
AbstractOrganic solar cells (OSCs) achieved performance booming benefiting from the emerging of non‐fullerene acceptors, while inadequate device stability hampers their further application. At present, the prevalent belief attributes the inevitable thermal degradation of OSC device to morphological instability caused by excessive phase separation and crystallization in the active layer during device operation. However, it is inapplicable for state‐of‐art Y6‐based devices which strongly degrade before large‐scale morphology change. Herein, an alternative degradation mechanism is elucidated wherein molecular orientation change and demixing induced performance degradation in Y6‐based devices. Distinct from IT‐4F‐based counterpart, Y6‐based devices suffer severe thermal degradation dominated by open‐circuit voltage (VOC) and fill factor (FF) losses. The VOC loss is attributed to molecular orientation transition of polymer donors from edge‐on to face‐on, leading to a strong built‐in potential reduction and increase in non‐radiative loss due to energy level shifting. As for FF decay, discontinuous acceptor phases result in electron mobility decrease by over orders of magnitude, originating from the increased molecular stacking and phase separation. This work reveals the thermal degradation mechanism for Y6‐based devices and correlates the photoelectric properties with morphology instability, which will offer guidance for improving the stability of high‐performance OSCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.