Abstract

Tumor necrosis factor‐α (TNF‐α) is a pluripotent signaling molecule. The biological effect of TNF‐α includes slowing down osteogenic differentiation, which can lead to bone dysplasia in long‐term inflammatory microenvironments. Signal transducer and activator of transcription 3 (STAT3)‐interacting protein 1 (StIP1, also known as elongator complex protein 2, ELP2) play a role in inhibiting TNF‐α‐induced osteoblast differentiation. In the present study, we investigated whether and how ELP2 activation mediates the effects of TNF‐α on osteoblastic differentiation. Using in vitro cell cultures of preosteoblastic MC3T3‐E1 cells, we found that TNF‐α inhibited osteoblastic differentiation accompanied by an increase in ELP2 expression and STAT3 activation. Forced ELP2 expression inhibited osteogenic differentiation of MC3T3‐E1 cells, with a decrease in the expression of osteoblast marker genes, alkaline phosphatase activity, and matrix mineralization capacity. In contrast, ELP2 silencing ameliorated osteogenic differentiation in MC3T3‐E1 cells, even after TNF‐α stimulation. The TNF‐α‐induced inhibitory effect on osteoblastic differentiation was therefore mediated by ELP2, which was associated with Janus kinase 2 (JAK2)/STAT3 activation. These results suggest that ELP2 is upregulated at the differentiation of MC3T3‐E1 cells into osteoblasts and inhibits osteogenic differentiation in response to TNF‐α through STAT3 activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.