Abstract

The growth behavior of stationary axisymmetric vortices and of oscillatory, nonaxisymmetric spiral vortices in Taylor-Couette flow of a ferrofluid in between differentially rotating cylinders is analyzed using a numerical linear stability analysis. The investigation is done as a function of the inner and outer cylinder's rotation rates, the axial wave number of the vortex flows, and the magnitude of an applied homogeneous axial magnetic field. In particular, the consequences of incorporating elongational flow effects in the magnetization balance equation on the marginal control parameters that separate growth from decay behavior are determined. That is done for several values of the transport coefficient that measures the strength of these effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.