Abstract

Thiothrix strains are filamentous sulfur-oxidizing bacteria common in activated sludge. Some of the members, including Thiothrix nivea and T. fructosivorans, are known to form a microtubular sheath that covers a line of cells. The sheaths are assemblages of [→4)-β-d-GlcN-(1→4)-β-d-Glc-(1→]n modified with unusual deoxy sugars. In an attempt to elucidate the sheath-forming mechanism, the patterns of sheath formation and cell proliferation were determined in this study. Prior to analysis, both sheaths were confirmed to be highly de-N-acetylated. Sheaths in viable filaments were N-biotinylated followed by cultivation and then fluorescently immunostained. Epifluorescence microscopy of the filaments revealed ubiquitous elongation of the sheaths. For visualization of the cell proliferation pattern, the cell membrane was fluorescently stained. The epifluorescence images demonstrated that cell proliferation also proceeds ubiquitously, suggesting that sheath elongation proceeds surrounding an elongating cell. In addition, the fine structure of the Thiothrix filaments was analyzed by transmission electron microscopy employing a freeze-substitution technique. The micrographs of freeze-substituted filaments showed that the sheaths were thin and single layered. In contrast, the sheaths in chemically fixed filaments appeared thick and multilayered. Treatment with glutaraldehyde probably caused deformation of the sheaths. Supporting this possibility, the sheaths were found to be deformed or solubilized by N-acetylation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.