Abstract

The response of T4-phage DNA molecules to an elongational flow field was monitored by flow-induced birefringence as a function of temperature. The flow-induced birefringence observed in this study was localized in the pure elongational flow area with a critical strain rate, indicating that the birefringence was attributed to a coil–stretch transition of DNA molecules. The slight decrease in the birefringence intensity with increases in temperature to 40°C was explained by a thermal-activation process. At temperatures above 50°C, flow-induced birefringence decreased remarkably, and no birefringence was observed at temperatures above 60°C. After the flow experiments, ambient temperature was reduced back to room temperature, and flow experiments at room temperature were performed again. Flow-induced birefringence was recovered almost completely in samples for which the first flow measurements were made at temperatures below 53°C. Irreversible changes were observed for samples for which the first flow experiments were performed at temperatures above 55°C. The temperature dependence of UV-absorption spectra revealed that the double-strand DNA helix began to partially untwine at a temperature over 50°C, and duplexes became almost completely untwined at a temperature over 55°C. A comparison of electrophoresis patterns for untwined molecules showed that flow-induced scission of DNA molecules occurred in a sample solution in flow experiments performed at 65°C, while no molecular weight reduction was observed in the sample solution at 55°C. In this article, this difference between the untwined DNA molecules is discussed on the basis of the thermally activated bond scission (TABS) model. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1357–1365, 2002

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.