Abstract

Elongation factor TFIIS (transcription factor IIS) is structurally and biochemically probably the best characterized elongation cofactor of RNA polymerase II. However, little is known about TFIIS regulation or its roles during stress responses. Here, we show that, although TFIIS seems unnecessary under optimal conditions in Arabidopsis, its absence renders plants supersensitive to heat; tfIIs mutants die even when exposed to sublethal high temperature. TFIIS activity is required for thermal adaptation throughout the whole life cycle of plants, ensuring both survival and reproductive success. By employing a transcriptome analysis, we unravel that the absence of TFIIS makes transcriptional reprogramming sluggish, and affects expression and alternative splicing pattern of hundreds of heat-regulated transcripts. Transcriptome changes indirectly cause proteotoxic stress and deterioration of cellular pathways, including photosynthesis, which finally leads to lethality. Contrary to expectations of being constantly present to support transcription, we show that TFIIS is dynamically regulated. TFIIS accumulation during heat occurs in evolutionary distant species, including the unicellular alga Chlamydomonas reinhardtii, dicot Brassica napus and monocot Hordeum vulgare, suggesting that the vital role of TFIIS in stress adaptation of plants is conserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.