Abstract

In this study, the method to apply the Elman's recurrent neural networks using resilient back propagation for harmonic detection is described. The feed forward neural networks are also used for comparison. The distorted wave including 5th, 7th, 11th, 13th harmonics were simulated and used for training of the neural networks. The distorted wave including up to 25th harmonics were prepared for testing of the neural networks. Elman's recurrent and feed forward neural networks were used to recognize each harmonic. The results obtained using Elman's recurrent neural networks are better than the results values obtained using the feed forward neural networks for resilient back propagation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.