Abstract
Rate-dependent hysteresis nonlinearity in piezoelectric actuators severely limits micro- and nanoscale system performance. It is necessary to establish a dynamic model to describe the full behavior of rate-dependent hysteresis. In this article, the Elman neural network–based hysteresis model is developed for piezoelectric actuators. An improved dynamic hysteretic operator is proposed to transform the multi-valued mapping of hysteresis into one-to-one mapping on a newly constructed expanded input space. Then, Elman neural network incorporated with the improved dynamic hysteretic operator is utilized to approximate the behavior of rate-dependent hysteresis. The combination of Elman neural network and the improved dynamic hysteretic operator can dually embody the dynamic property and is capable of fully extracting the characteristics of rate-dependent hysteresis. The experimental results are presented to illustrate the potential of the proposed modeling technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Intelligent Material Systems and Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.