Abstract
In this investigation, Elman neural networks were utilized for predicting the mechanical properties of Self- Compacting Concretes (SCCs). Elman models were designed by using experimental data of many different concrete mixdesigns of various types of SCC that were collected from the literature. In order to investigate the effectiveness of the selected input variables on the network performance in predicting intended properties, utilized data in artificial neural networks were considered in two sets of 8 and 140 input variables. The obtained outcomes showed that not only can the developed Elman ANNs predict the mechanical properties of SCCs with high accuracy, but also for all of the desired outputs, networks with 140 inputs, compared to ones with 8, have a remarkable percent improvement in the obtained prediction results. The prediction accuracy can significantly be improved by using a more complete and accurate set of key factors affecting the desired outputs, as input variables, in the networks, which is leading to more similarity of the predicted results gained from networks to experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.