Abstract
This article addresses the problem of fast fixed-time tracking control for robotic manipulator systems subject to model uncertainties and disturbances. First, on the basis of a newly constructed fixed-time stable system, a novel faster nonsingular fixed-time sliding mode (FNFTSM) surface is developed to ensure a faster convergence rate, and the settling time of the proposed surface is independent of initial values of system states. Subsequently, an extreme learning machine (ELM) algorithm is utilized to suppress the negative influence of system uncertainties and disturbances. By incorporating fixed-time stable theory and the ELM learning technique, an adaptive fixed-time sliding mode control scheme without knowing any information of system parameters is synthesized, which can circumvent chattering phenomenon and ensure that the tracking errors converge to a small region in fixed time. Finally, the superior of the proposed control strategy is substantiated with comparison simulation results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.