Abstract

The radial second mode of sloshing in a circular cylindrical oil storage tank induces an out-of-plane deformation of the floating roof deck. The radial contraction of the deck due to this out-of-plane deformation contains modal components with circumferential wave numbers 0 and 2, thereby causing an elliptical deformation of the pontoon, which encloses the deck. In a previous paper, the stress caused by this elliptical deformation was analyzed by regarding the radial contraction of the deck as an enforced displacement of the whole pontoon. This paper presents an improved method for this stress analysis by considering the radial contraction of the deck as an enforced displacement of the joint between the deck and the pontoon. First, the effectiveness of the previous method in estimating the hoop membrane stress at the joint with the deck is confirmed by comparing the results obtained from the previous and improved method. Next, the improved method is used to predict also the other stress components in each portion of the pontoon. Numerical results reveal that the bending stresses are magnified locally near the joint with the deck and that the hoop membrane stress in the outer portion of the pontoon sensitively depends on the geometry of the cross-section of the pontoon. It is found that the hoop membrane stress near the joint between the outer rim and the top (or bottom) of the pontoon can be significantly reduced by increasing the slope of the top (or bottom) of the pontoon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call