Abstract

Concrete-filled FRP tubes (CFFTs) have found increasing applications due to their superior ductility and remarkable corrosion resistance. In published literature, circular CFFTs and rectangular CFFTs have been investigated extensively, while there are relatively few studies on elliptical CFFTs. There is no research about elliptical CFFTs with an embedded H-shaped steel (i.e., HS-ECFFTs) under axial compression and cyclic lateral loading. Against this background, this paper investigated the seismic behaviour of HS-ECFFTs experimentally and numerically. Test results indicated that: (1) all HS-ECFFTs performed well with remarkable energy dissipation ability; (2) due to the effective FRP confinement, the local buckling of the H-shaped steel was prohibited; (3) the elliptical aspect ratio had limited influences on the ductility, the stiffness degradation and the energy dissipation; (4) the FRP thickness, after a certain threshold, showed beneficial but limited influences on the peak load, the stiffness degradation and the energy dissipation; (5) the HS-ECFFT specimen performed much better in terms of the peak load, the ductility, the stiffness degradation and the energy dissipation when it was bending around the strong axis. The proposed numerical model established on the OpenSees platform could generate reasonably accurate numerical results for all HS-ECFFTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.