Abstract
We present the analogue, for an arbitrary complex reductive group G, of the elliptic integrable systems of Sklyanin. The Sklyanin integrable systems were originally constructed on symplectic leaves, of a quadratic Poisson structure, on a loop group of type A. The phase space, of our integrable systems, is a group-like analogue of the Hitchin system over an elliptic curve E. We consider the moduli space of pairs (P,f), where P is a principal G-bundle on E, and f is a meromorphic section of the adjoint group bundle. We show: 1) The moduli space admits an algebraic Poisson structure. It is related to the poisson structures on loop groupoids, constructed by Etingof and Varchenko, using Felder's elliptic solutions of the Classical Dynamical Yang-Baxter Equation. 2) The symplectic leaves are finite dimensional. A symplectic leaf is determined by labeling, finitely many points of E, each by a dominant co-character of the maximal torus of G. 3) Each leaf is an algebraically completely integrable system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.