Abstract

In the paper, we present a family of multivariate compactly supported scaling functions, which we call as elliptic scaling functions. The elliptic scaling functions are the convolution of elliptic splines, which correspond to homogeneous elliptic differential operators, with distributions. The elliptic scaling functions satisfy refinement relations with real isotropic dilation matrices. The elliptic scaling functions satisfy most of the properties of the univariate cardinal B-splines: compact support, refinement relation, partition of unity, total positivity, order of approximation, convolution relation, Riesz basis formation (under a restriction on the mask), etc. The algebraic polynomials contained in the span of integer shifts of any elliptic scaling function belong to the null-space of a homogeneous elliptic differential operator. Similarly to the properties of the B-splines under differentiation, it is possible to define elliptic (not necessarily differential) operators such that the elliptic scaling functions satisfy relations with these operators. In particular, the elliptic scaling functions can be considered as a composition of segments, where the function inside a segment, like a polynomial in the case of the B-splines, vanishes under the action of the introduced operator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.