Abstract

We establish quantitative homogenization, large‐scale regularity, and Liouville results for the random conductance model on a supercritical (Bernoulli bond) percolation cluster. The results are also new in the case that the conductivity is constant on the cluster. The argument passes through a series of renormalization steps: first, we use standard percolation results to find a large scale above which the geometry of the percolation cluster behaves (in a sense, made precise) like that of euclidean space. Then, following the work of Barlow [8], we find a succession of larger scales on which certain functional and elliptic estimates hold. This gives us the analytic tools to adapt the quantitative homogenization program of Armstrong and Smart [7] to estimate the yet larger scale on which solutions on the cluster can be well‐approximated by harmonic functions on ℝd. This is the first quantitative homogenization result in a porous medium, and the harmonic approximation allows us to estimate the scale on which a higher‐order regularity theory holds. The size of each of these random scales is shown to have at least a stretched exponential moment. As a consequence of this regularity theory, we obtain a Liouville‐type result that states that, for each k ∊ ℕ, the vector space of solutions growing at most like o(|x|k+1) as |x| → ∞ has the same dimension as the set of harmonic polynomials of degree at most k, generalizing a result of Benjamini, Duminil‐Copin, Kozma, and Yadin from k ≤ 1 to k ∊ ℕ. © 2018 Wiley Periodicals, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call