Abstract
AbstractJust as in the usual elliptic theory, in the theory of nonlocal elliptic operators we need not restrict ourselves to individual operators but can also consider families of nonlocal elliptic operators. The index of such a family is already not a number but an element of the K-group of the parameter space (or, which is the same, the K-group of the algebra of continuous functions on the parameter space.) In the classical elliptic theory, there is a long- and well-known construction that permits studying both the problem on the index of a single operator and the problem on the index of families, as well as several other problems (for more detail, see the literature cited below) in the framework of a unified approach related to studying the elliptic operators over an arbitrary C*-algebra Λ. (The problem on the index of a single operator is obtained for Λ = ℂ, and the problem on the index of families is obtained for Λ = C0(X), where X is the parameter space.) In the present chapter, we generalize the theory of elliptic operators over C*-algebras to the case of nonlocal elliptic operators.KeywordsSobolev SpaceElliptic OperatorOrthogonal ComplementFredholm OperatorTrivial BundleThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.