Abstract
Haïm Brezis and Augusto Ponce introduced and studied several extensions of Kato's inequality, in particular Kato's inequalities up to the boundary involving the Laplacian and the normal derivative of the positive part of a W1,1 function in a smooth domain [H. Brezis, A.C. Ponce, Kato's inequality when Δu is a measure, C. R. Acad. Sci. Paris Sér. I 338 (2004) 599–604; H. Brezis, A.C. Ponce, Kato's inequality up to the boundary, Commun. Contemp. Math. 10 (2008) 1217–1241]. Using potential theoretic methods we answer here some questions raised in [H. Brezis, A.C. Ponce, Kato's inequality up to the boundary, Commun. Contemp. Math. 10 (2008) 1217–1241] about the relations between the normal derivative of a function u and the normal derivative of its positive part u+. The results apply to a large class of domains and elliptic operators in divergence form and finally an expression of the normal derivative of a function of u is given. In the final appendix, H. Brezis solves an old question of J. Serrin about pathological solutions of certain elliptic equations [J. Serrin, Pathological solutions of elliptic differential equations, Ann. Sc. Norm. Super. Pisa (3) 18 (1964) 385–387]. This is used in the paper to extend the first version of our main result.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.