Abstract

The recently discovered concentration of vorticity in slender vortex tubes in turbulent flow fields has motivated the investigation of a class of vortices with elliptical streamlines. As a prototype of this flow, long vortices confined in a rectangular cavity and driven by tangentially moting walls are studied. These vortices are characterized by a large rate of plane strain at the core. The quasi-two-dimensional flow is found to be unstable at small Reynolds numbers, if the eccentricity of the streamlines, i.e. the strain rate, is sufficiently large. The three-dimensional supercritical flow is found to be steady with a wavelength of the order of the vortex core diameter. The flow pattern appears in the form of rectangular cells that are very robust. Good agreement between experiment and numerical calculations is obtained. It is argued that the instability found is due to the elliptic instability mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.