Abstract
Let $(M^N, g, e^{-f}dv)$ be a complete smooth metric measure space with $\infty$-Bakry-\'Emery Ricci tensor bounded from below. We derive elliptic gradient estimates for positive solutions of a weighted nonlinear parabolic equation \begin{align*} \displaystyle \Big(\Delta_f - \frac{\partial}{\partial t}\Big) u(x,t) +q(x,t)u^\alpha(x,t) = 0, \end{align*} where $(x,t) \in M^N \times (-\infty, \infty)$ and $\alpha$ is an arbitrary constant. As Applications we prove a Liouville-type theorem for positive ancient solutions and Harnack-type inequalities for positive bounded solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.