Abstract
We analyze the characteristic series, the KO series and the series associated with the Witten genus, and their analytic forms as the q-analogs of classical special functions (in particular q-analog of the beta integral and the gamma function). q-Series admit an analytic interpretation in terms of the spectral Ruelle functions, and their relations with appropriate elliptic modular forms can be described. We show that there is a deep correspondence between the characteristic series of the Witten genus and KO characteristic series, on one side, and the denominator identities and characters of N=2 superconformal algebras, and the affine Lie (super)algebras on the other. We represent the characteristic series in the form of double series using the Hecke–Rogers modular identity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.