Abstract

The agreement of elliptic flow data at RHIC at central rapidity with the hydrodynamic model has led to the conclusion of very rapid thermalization. This conclusion is based on the intuitive argument that hydrodynamics, which assumes instantaneous local thermalization, produces the largest possible elliptic flow values and that the data seem to saturate this limit. We here investigate the question whether incompletely thermalized viscous systems may actually produce more elliptic flow than ideal hydrodynamics. Motivated by the extremely fast primordial longitudinal expansion of the reaction zone, we investigate a toy model that exhibits thermalization only in the transverse directions but undergoes collisionless free-streaming expansion in the longitudinal direction. For collisions at RHIC energies, elliptic flow results from the model are compared with those from hydrodynamics. With the final particle yield and ${k}_{\ensuremath{\perp}}$ distribution fixed, the transversally thermalized model is shown not to be able to produce the measured amount of elliptic flow. This investigation provides further support for very rapid local kinetic equilibration at RHIC. It also yields interesting novel results for the elliptic flow of massless particles such as direct photons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.