Abstract
Abstract For any family of elliptic curves over the rational numbers with fixed $j$-invariant, we prove that the existence of a long sequence of rational points whose $x$-coordinates form a nontrivial arithmetic progression implies that the Mordell–Weil rank is large, and similarly for $y$-coordinates. We give applications related to uniform boundedness of ranks, conjectures by Bremner and Mohanty, and arithmetic statistics on elliptic curves. Our approach involves Nevanlinna theory as well as Rémond’s quantitative extension of results of Faltings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.