Abstract

The group of rational points on an elliptic curve over Q is always a finitely generated Abelian group, hence isomorphic to Zr×G with G a finite Abelian group. Here, r is the rank of the elliptic curve. In this paper, we determine sufficient conditions that need to be set on the prime numbers p and q so that the elliptic curve E:y2=x3−3pqx over Q would possess a rank zero or one. Specifically, we verify that if distinct primes p and q satisfy the congruence p≡q≡5(mod24), then E has rank zero. Furthermore, if p≡5(mod12) is considered instead of a modulus of 24, then E has rank zero or one. Lastly, for primes of the form p=24k+17 and q=24ℓ+5, where 9k+3ℓ+7 is a perfect square, we show that E has rank one.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.