Abstract

Let $E$ be an elliptic curve over $\mathbb {Q}$ described by $y^2= x^3+ Kx+ L$, where $K, L \in \mathbb {Q}$. A set of rational points $(x_i,y_i) \in E(\mathbb {Q})$ for $i=1, 2, \ldots , k$, is said to be a sequence of consecutive cubes on $E$ if the $x$-coordinates of the points $x_i$'s for $i=1, 2,\ldots $, form consecutive cubes. In this note, we show the existence of an infinite family of elliptic curves containing a length-$5$-term sequence of consecutive cubes. Moreover, these five rational points in $E (\mathbb {Q})$ are linearly independent, and the rank $r$ of $E(\mathbb {Q})$ is at least $5$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.