Abstract
The purpose of this paper is to provide a detailed description of the spaces that can be specified as L2 domains for the operators of a first order elliptic complex on a compact manifold with conical singularities. This entails an analysis of the nature of the minimal domain and of a complementary space in the maximal domain of each of the operators. The key technical result is the nondegeneracy of a certain pairing of cohomology classes associated with the indicial complex. It is further proved that the set of choices of domains leading to Hilbert complexes in the sense of Bruning and Lesch form a variety, as well as a theorem establishing a necessary and sufficient condition for the operator in a given degree to map its maximal domain into the minimal domain of the next operator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.