Abstract
The Boutet de Monvel calculus of pseudo-differential boundary operators is generalised to the full scales of Besov and Triebel--Lizorkin spaces (though with finite integral exponents for the latter). The continuity and Fredholm properties proved here extend those previously obtained by Franke and Grubb, and the results on range complements of surjectively elliptic Green operators improve the earlier known, even for the classical spaces with $1<p<\infty$. The symbol classes treated are the uniformly estimated ones. Some precisions are given for the general definitions of trace and singular Green operators of class 0.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.