Abstract
For the fifth Painlevé transcendents, an asymptotic representation by the Jacobi sn-function is presented in cheese-like strips along generic directions near the point at infinity. Its elliptic main part depends on a single integration constant, which is the phase shift and is parametrized by monodromy data for the associated isomonodromy deformation. In addition, under a certain supposition, the error term is also expressed by an explicit asymptotic formula, whose leading term is written in terms of integrals of the sn-function and the ϑ-function, and contains the other integration constant. Instead of the justification scheme for asymptotic solutions of Riemann-Hilbert problems by the Brouwer fixed point theorem, we begin with a boundedness property of a Lagrangian function, which enables us to determine the modulus of the sn-function satisfying the Boutroux equations and to construct deductively the elliptic representation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.