Abstract

Annealing of SiO2 layers with excessive Si leading to the formation of silicon nanocrystals capable of fluorescing in the visible region owing to quantum-dimensional limitations is studied by the ellipsometry method. Excessive Si was introduced in SiO2 layers by ion implantation with an energy of 25 keV and a dose of 5× 1016 cm−2. Isochronous (103 s) annealings were carried out in a temperature interval of 200–1150°C with a step of 100°C. An LEF-2 ellipsometer with a 70° angle of incidence at a wavelength of 632.8 nm was used for the measurements. Fluorescence excited by a nitrogen laser was monitored concurrently. It is found that variations in optical constants of the layers at each step of annealing over the entire temperature range studied are clearly detected by ellipsometry. Variations in optical parameters of excessive Si are calculated in the Bruggeman approximation. They are found to correspond to individual stages of the formation of nanoprecipitates revealed earlier by other techniques. Nanocrystals proper producing intense visible photoluminescence are formed at annealing temperatures of 1000°C and higher.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.