Abstract

The equilibrium behavior of ellipsoidal Janus nanoparticles at water-oil interfaces was investigated using dissipative particle dynamics simulations. It was found that the orientation of the nanoparticles with respect to the interface depends on nanoparticle aspect ratio, on the amount of polar vs nonpolar surface groups, and on the interactions between the nanoparticles surface groups and aqueous and nonaqueous solvents. The changes in nanoparticle orientation are not always monotonic, probably because of a competition between different driving forces. For nanoparticles of high aspect ratio, steric effects seem to cause an isotropic-to-nematic phase transition as the surface coverage increases. It was observed that at a sufficiently high surface coverage the nanoparticles are most effective at reducing the interfacial tension when they lay with their longer axis parallel to the interface. The simulation results presented could be useful for the design of Pickering emulsions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.