Abstract

This paper develops a novel ellipse fitting algorithm by recovering a low-rank generalized multidimensional scaling (GMDS) matrix. The main contributions of this paper are: i) Based on the derived Givens transform-like ellipse equation, we construct a GMDS matrix characterized by three unknown auxiliary parameters (UAPs), which are functions of several ellipse parameters; ii) Since the GMDS matrix will have low rank when the UAPs are correctly determined, its recovery and the estimation of UAPs are formulated as a rank minimization problem. We then apply the alternating direction method of multipliers as the solver; iii) By utilizing the fact that the noise subspace of the GMDS matrix is orthogonal to the corresponding manifold, we determine the remaining ellipse parameters by solving a specially designed least squares problem. Simulation and experimental results are presented to demonstrate the effectiveness of the proposed algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.