Abstract

The fact that vitamin C (ascorbic acid) exhibits a protective effect in certain types of cancer is well documented. Our previous studies demonstrated that human bladder tumor cell line (T24) has N-acetyltransferase (NAT) activity in cytosols and intact cells. The present studies examined the inhibition of arylamine NAT activity and carcinogen (2-aminofluorene)-DNA adduct formation by ellagic acid (EA) in human bladder tumor cell lines (T24 and TSGH 8301). Two assay systems were performed, one with cellular cytosols (9,000g supernatant), the other with intact bladder tumor cell suspensions. NAT activity and 2-aminofluorene-DNA adduct formation in T24 and TSGH 8301 cells was inhibited by EA in a dose-dependent manner in both systems, i.e., the greater the concentration of EA in the reaction the greater the inhibition of NAT activity (dose-and time-course dependent effects). The data also indicated that EA decreased the apparent Km and Vmax of NAT enzymes from T24 and TSGH 8301 cells in cytosols. NAT activity and 2-aminofluorene-DNA adducts in T24 is higher than in TSGH 8301. This report is the first to demonstrate that EA affects human bladder tumor cell NAT activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call