Abstract

Abstract Background Biotechnological processes are part of modern industry as well as stricter environmental requirements. The need to reduce production costs and pollution demands for alternatives that involve the integral use of agro-industrial waste to produce bioactive compounds. The citrus industry generates large amounts of wastes due to the destruction of the fruits by microorganisms and insects together with the large amounts of orange waste generated during the production of juice and for sale fresh. The aim of this study was used orange wastes rich in polyphenolic compounds can be used as source carbon of Aspergillus fumigatus MUM 1603 to generate high added value compounds, for example, ellagic acid and other molecules of polyphenolic origin through submerged fermentation system. Results The orange peel waste had a high concentration of polyphenols, 28% being condensed, 27% ellagitannins, 25% flavonoids and 20% gallotannins. The major polyphenolic compounds were catechin, EA and quercetin. The conditions, using an experimental design of central compounds, that allow the production of the maximum concentration of EA (18.68 mg/g) were found to be: temperature 30°C, inoculum 2 × 107 (spores/g) and orange peel polyphenols 6.2 (g/L). Conclusion The submerged fermentation process is an effective methodology for the biotransformation of molecules present in orange waste to obtain high value-added as ellagic acid that can be used as powerful antioxidants, antibacterial and other applications. How to cite: Sepulveda L, Laredo-Alcala E, Buenrostro-Figueroa JJ, et al. Ellagic acid production using polyphenols from orange peel waste by submerged fermentation. Electron J Biotechnol 2020;43. https://doi.org/10.1016/j.ejbt.2019.11.002 .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call