Abstract

Mitochondrial abnormalities and redox imbalance are major pathogenic factors in progression of Huntington's disease (HD), manifested clinically by affective, motor, cognitive, and psychiatric incompetence. Antioxidants behold much promise in mitigation of several pathological facets in HD. Ellagic acid (EA) is a naturally derived polyphenol acknowledged for potent neuroprotective abilities that enabled its significance amongst popular brain tonics. The present study is aimed to examine the outcome of EA pre-treatment in 3-nitropropionic acid (3-NP) rat prototype of HD. Separate rat groups were pre-treated with EA (25, 50, and 100mg/kg, p.o.) for 21days and 3-NP (10mg/kg, i.p.) was given for 14days alongside to induce symptoms of HD. The physical/motor functions (narrow beam paradigm, footprint study, hanging-wire assessment) and cognitive abilities using elevated plus maze and novel object recognition task were evaluated. Entire brain was isolated and succinate dehydrogenase activity and parameters of oxido-nitrosative stress were assessed in mitochondrial fraction. 3-NP accrued oxido-nitrosative stress and significant decrease in succinate dehydrogenase activity caused motor and cognitive deficits in rats. EA pre-treatment resurrected succinate dehydrogenase activity in 3-NP treated rats that indicated preservation of mitochondrial function. A significant decrease in thiobarbituric acid reactive substances and nitrite levels and increase in glutathione and catalase activity by EA in 3-NP treated rats was noted. EA protected the rats against 3-NP triggered cognitive insufficiency and motor disturbances. It can be inferred that ellagic acid protects against 3-NP induced mitochondrial dysfunction and oxido-nitrosative stress in the brain. EA supplements or nutraceuticals might possess protective potential against symptoms of HD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.